Roll No. :

333556(33)

B. E. (Fifth Semester) Examination, April-May/Nov.-Dec. 2020

(New Scheme)

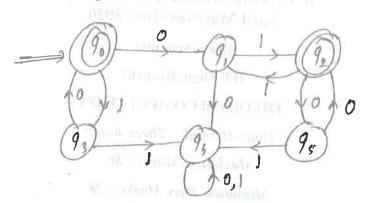
(IT Engg. Branch)

THEORY of COMPUTATION

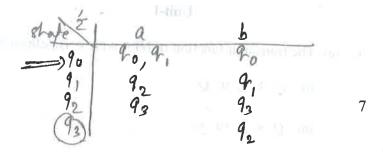
Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

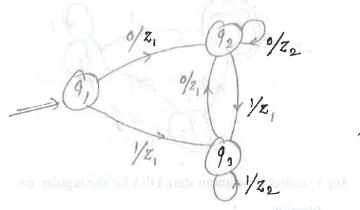

Note: Part (a) of each question is compulsory and carry 2 marks. In remaining part (b), (c) and (d). Attempt any two and each carry equal marks.

Unit-I


- 1. (a) The transition function of NFA with \in is defined by
 - (i) $Q \times \Sigma$ to Q
 - (ii) $Q \times \Sigma$ to 2^Q

2

(b) Construct minimum state automata equivalent to the following DFA.



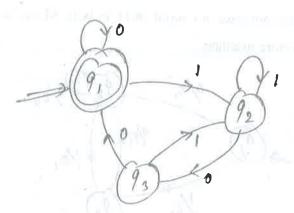
(c) Construct equivalent a deterministic finite automata equivalent to $M = \left(< q_0, q_1, q_2, q_3 \right), \{0, 1\}, \delta, q_0, \left\{q_3\right\}$ where is given by

[3]

(d) Consider the Mealy machine represented by following diagram. Construct equivalent Moore Machine and find outcome for input 0011 in both Mealy and Moore machine.

Unit-II

2. (a) The regular expression $(P+Q)^*$ is equal to $(P+Q)^*$


(i)
$$\left(P^*Q\right)^*$$

$$(ii)$$
 $(PQ^*)^*$

(iii)
$$(PQ)^{*}$$

(iv)
$$(P^* + Q^*)^*$$

(b) Construct regular expression corresponding to following state diagram.

(c) Construct minimum state DFA for the regular expression

$$10 + (0 + 11) 0^* 1.$$

(d) What is pumping lemma? Prove what language

$$L = \left\{ 0^j, 1^j / j \ge 1 \right\}$$
 is not regular?

Unit-III

3. (a) Consider the set of production P of some grammar G as

$$S \rightarrow a S/Sb/a/b$$

	The	e above production support the format of	
	(i)	Regular grammar	
	(ii)	Content free grammar	
	(iii)	Regular and content free grammar	
	(iv)	None	2
(b)	Sho	ow that following grammar is ambiguous:	
	(i)	$S \rightarrow a/abSb/aAb$	
		$A \rightarrow bS/aAAb$	31/2
	(ii)	$S \rightarrow aB/ab$	
		$A \rightarrow aAB/a$	
		B o ABb/b . The state of the first section denotes so that the state of the sta	31/2
(c)	Red	uce the following CFG to GNF.	
	<i>S</i> –:	$\rightarrow ABb/a$, $A \rightarrow aaA$, $B \rightarrow bAb$	7

(d) Find an equivalent CNF grammar for the following grammar: a northeoreus aller andur bonsallers will (m) &

$$S \rightarrow \sim S \mid [S \supset S] \mid p/q$$
 (S being the only variable). 7

Unit-IV

4. (a) $\{a^n b^n/n \ge 1\}$ is accepted by a PDA

	(i) by null store and also by final state
	(ii) by null store but not by final state
	(iii) by final state but not by null store
	(iv) by none of these
	(b) Design deterministic PDA for the following language
	$L = \left\{ WCW^R / W \in (0+1); \right.$
	W_{\cdot}^{R} is reverse of W and C is a terminal symbol $\}$
	(c) Design a turing machine to accepts.
	$L = \left\{ 0^n, 1^n / n \ge 1 \right\}$
	(d) Write short notes on following:
	(i) Post Correspondence problem 3½
	(ii) Church's Hypothesis 31/2
	Unit-V blanks open to the
5.	(a) The evaluated value of composition function
	$S(Z(U_1^3(2,4,7)))$ is
	(i) 2

	(iii) 7	
	(iv) 1	2
(b)	Show that the function $f(x, y) = x + y$ is primitive	
	recursive.	7
(c)	Construct Turing Machine what can compute the	
	zero initial function; Z.	7

(d) Explain recursive and recursive enumerable language

7

in detail.

d. (a) 4 / (a) to // (a) to // (a) to // (b) A (ii)